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Identification of illuminant and object colors:
heuristic-based algorithms
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In everyday scenes, from perceived colors of objects and terrains, observers can simultaneously identify objects
across illuminants and identify the nature of the light, e.g., as sunlight or cloudy. As a formal problem, iden-
tifying objects and illuminants from the color information provided by sensor responses is underdetermined.
It is shown how the problem can be simplified considerably by the empirical result that chromaticities of sets
of objects under one illuminant are approximately affine transformations of the chromaticities under spectrally
different illuminants. Algorithms that use the affine nature of the correlation as a heuristic can identify ob-
jects of identical spectral reflectance across scenes lit simultaneously or successively by different illuminants.
The relative chromaticities of the illuminants are estimated as part of the computation. Because information
about objects and illuminants is useful in many different tasks, it would be more advantageous for the visual
system to use such algorithms to extract both sorts of information from retinal signals than to discount either
automatically at an early neural stage. © 1998 Optical Society of America [S0740-3232(98)01207-1]

OCIS codes: 150.0150, 100.0100, 330.0330, 330.1720, 330.4060.
1. INTRODUCTION
Identification of objects is an important function for the
visual system to perform, and perceived colors of objects
are useful in this task. Since the spectral composition of
the light reflected from an object changes as a function of
the spectral composition of the illuminant, it has fre-
quently been suggested that the nervous system should
discount the effect of the illuminant so that the colors of
objects remain constant.1–16 Many theories of human
color constancy propose that early adaptation
mechanisms1–6 discard illuminant-related signals, while
others suggest that these signals are discarded by higher-
level adaptation12 or simultaneous contrast.7,13 The no-
tion that the nervous system discards these signals has
led to a large number of empirical studies that have at-
tempted to measure the extent to which object colors are
constant across illumination changes.2,3,7,13–16

The present paper, however, suggests that the problem
for the visual system to solve is not to bring about stable
color appearance under different illuminants by discount-
ing them but to recognize that objects are indeed being
viewed under different illuminants and to discover what
the illuminant properties are.

The paper begins with observations that objects appear
to be of systematically different colors under different il-
luminants. These transformations in the appearances of
objects are information that the nervous system can po-
tentially use in the identification of both objects and illu-
minants. Color photographs of natural scenes are used
in this paper to demonstrate the systematic manner in
which apparent colors of objects differ under different il-
luminants. Comparisons with gray-level versions of the
same photographs reveal that observers can use differ-
ences in object colors to identify illuminants. Experi-
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mental studies have universally concluded that object col-
ors as measured by asymmetric matching are not
perfectly constant.2,3,7,13–16 Instead of this failure of con-
stancy being viewed as a limitation of the visual system,
in this paper it is regarded as a design feature that allows
the observer to extract information about the
illuminant.17

Using the spectral reflectance functions of natural and
manmade objects lit by different daylight illuminants,
this paper shows that changes in the spectral composition
of the illumination on a set of objects lead to affine trans-
formations of the set of object chromaticities. Affine
transformations have well-defined invariants,18 and these
invariants can be used to derive the transformation pa-
rameters, thus identifying identical objects across differ-
ent sets of chromaticities. This is accomplished in two
template-matching types of algorithms.

This paper also introduces the concept of the invariant
‘‘essential’’ color of an object. As a special case for the al-
gorithms, if an observer has access to the essential color
of even one identifiable object in a scene, the algorithms
will recover the essential colors of other objects in the
scene and of the illuminant.

2. ROLE OF COLOR IN PERCEIVING
NATURAL SCENES
By looking at the same outdoor scene at various times of
the day, through seasonal changes and under overcast or
sunny skies, etc., one realizes that an object can appear to
be of different colors under different natural illuminants.
These shifts in color are useful cues from which an ob-
server can infer the nature of the illuminant without hav-
ing to see its source. Painters such as Monet and Corot
used this fact to great effect in their paintings.
1998 Optical Society of America
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The chromaticity, brightness, color contrast, and
brightness contrast of objects in a scene, coupled with
memories of object colors in different lights, help the ob-
server in making inferences about the nature of the illu-
minant. Compare color photographs of natural
scenes19,20 with gray-level versions of the same photo-
graphs (Fig. 1). Figure 1(a) shows shaded and sunny re-
gions of an autumn scene. The observer easily identifies
sunny regions as those areas where the foliage appears
lighter and yellower. In this example, the perceived col-
ors of objects clearly vary with illumination, conveying in-
formation about the illuminant spectrum. To attribute
the yellowish appearance of the trees to the illuminant,
however, the observer must assume a degree of similarity
in the spectral reflectance functions of the foliage under
the two illuminants. Because foliage that is perennially
in the shade can be physically different from that exposed
to sunlight, there is no guarantee that the reflectances
are identical. But even if the observer’s assumptions are
imprecise, an approximate separation of perceived color
into illuminant and object colors can be useful in many
tasks, e.g., to a hiker seeking cooler or warmer trails. It
could even be argued that in this case as in many others,
object color invariance is of less utility than illuminant
identification.

When we examine the gray-level version of Fig. 1(a), we
might infer that knowledge of the geometry of shadows
and junctions21 would be sufficient to identify the lighter
parts of the terrain as sunlit and that a memory of sun-
light as yellow is not necessary to infer changes in the il-
luminant. The importance of color memory in inferring
illuminant identify becomes clearer when the situation is
compared with that in Fig. 1(b). Some parts of the board-
walk and the railing are lighter than other parts. Com-
pared with the darker areas (gray-brown), the lighter
parts have a blue-gray-green tinge. This tinge shows the
light to be indirect and filtered through the green of the
forest leaves. Although lit regions are easily identified in
the gray-level versions of both Figs. 1(a) and 1(b), the
identities of the illuminants can be inferred only if one
Fig. 1. (a) Sun dance, (b) community boardwalk, Port Projection. Photographs from Ketchum19,20 scanned with an HP ScanJet 4P,
converted to gray levels in Corel PhotoPal, and printed on a Tektronix Phaser IISD.
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looks at the color photographs and sees the shift in the ob-
jects’ colors.

The lower-level of contrast in Fig. 1(b) could be consid-
ered a clue to the lack of direct sunlight. However, the
leaves in the lower-left part of Fig. 1(b) show that contrast
alone can be misleading. In the gray-level version, this
part of the scene has pale tones and high contrast, which
could lead to the inference that it is receiving more light.
In the color image, however, the light-yellow reflectance
of the leaves is revealed to be the source of the lightness
and higher contrast. The use of color information can
thus supplement other strategies21 for separating reflec-
tance changes from illumination-caused changes.

Color photography is a nonlinear process, and the col-
ors in Fig. 1 are only an approximation to those in the ac-
tual scenes. That the informal qualitative comparisons
above are generally valid can be confirmed by examining
real scenes. To summarize, a number of lessons can be
learned by looking at natural scenes. The apparent col-
ors of objects are different under different illuminants.
Hence the apparent colors of objects contain information
about both the surface reflectances and the illuminant
spectra. Recognizing objects and illuminants can be use-
ful in different tasks. Therefore an automatic early dis-
counting of neural information concerning either would
be suboptimal. The extraction of object and illuminant
colors from a variegated scene seems to involve compari-
sons that can take place across retinal areas or time,
when the set of reflectance functions under one illumi-
nant can be assumed to be similar to a subset of reflec-
tance functions under another illuminant. In addition,
some inferences about object and illuminant colors seem
to be referenced to memory colors. This paper will
present algorithms that formalize such operations.

3. ESSENTIAL COLORS AS OBJECT AND
ILLUMINANT INVARIANTS
For purposes of color vision, an object is characterized by
its spectral reflectance function @u i(l)#, the proportion of
light at each wavelength reflected by the object. An illu-
minant is characterized by its spectrum @Ga(l)#, the en-
ergy of light at each wavelength. The quantum absorp-
tions from an object u i(l) under an illuminant Ga(l) are
given by

Sia 5 E s~l!@u i~l! * Ga~l!#dl,

Mia 5 E m~l!@u i~l! * Ga~l!#dl,

Lia 5 E l~l!@u i~l! * Ga~l!#dl, (1)

where * is wavelength-by-wavelength multiplication and
s(l), m(l), l(l) are the absorption spectra of the cones.

In general, object reflectances change over time, often
as a result of exposure to light. For example, skin be-
comes more or less tan, flower colors change as they
bloom, foliage turns a darker green from spring to sum-
mer, and clothes fade. However, to some extent, espe-
cially in the short run, surface reflectance functions can
be assumed to be constant.2,3 For any individual ob-
server, to the extent that a surface reflectance function is
invariant, so too are the scalar products of the surface re-
flectance function and the spectral sensitivity functions of
that observer’s cones:

Si 5 E s~l!u i~l!dl,

Mi 5 E m~l!u i~l!dl,

Li 5 E l~l!u i~l!dl. (2)

Mathematically, these scalar products are identical to
cone quantum catches from the object under a unit equal-
energy illuminant E(l):

Si 5 E s~l!@u i~l! * E~l!#dl,

Mi 5 E m~l!@u i~l! * E~l!#dl,

Li 5 E l~l!@u i~l! * E~l!#dl. (3)

Hence for each observer a fixed function of the sensor re-
sponses from an object under an equal-energy illuminant
can serve as the invariant ‘‘essential’’ color of that object.

For any individual observer, to the extent that an illu-
minant spectrum is invariant, so too are the cone quan-
tum catches:

Sa 5 E s~l!Ga~l!dl,

Ma 5 E m~l!Ga~l!dl,

La 5 E l~l!Ga~l!dl. (4)

The cone quantum catches from an equal-energy illumi-
nant are obviously proportional to the area under each
cone spectral sensitivity curve.

Human cone spectral sensitivities are well approxi-
mated by the Smith–Pokorny22 fundamentals. The out-
puts of the cones are combined into two opponent-color
channels and a luminance channel. This serves to deco-
rrelate cone signals, particularly the extremely high cor-
relation between M and L signals.23,24 The two color-
opponent signals are represented by the axes of the
MacLeod–Boynton25 chromaticity diagram (Fig. 2). The
horizontal axis represents @L /(L 1 M)# and the vertical
axis represents [S /(L 1 M)]. In this diagram an equal-
energy light plots at (0.66, 0.016). For isolated lights the
appearance of hues along the horizontal axis changes
from greenish to reddish and along the vertical axis from
yellowish to violet. For mnemonic reasons the coordinate
axes will also be referred to as rg and yv.

The simulations in this paper used the spectra of the
170 natural and manmade objects that were measured by
Vrhel et al.26 The chromaticities of these objects under
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equal-energy light are shown in Fig. 2. These chroma-
ticities can be considered to be the essential colors of
these objects.

Similarly, for each observer the chromaticity of the il-
luminant relative to the chromaticity of the equal-energy
illuminant can serve as the ‘‘essential’’ color of the illumi-
nant.

The relation between color appearance and chromatic-
ity is complex.27 The formal algorithms in this paper op-
erate exclusively on chromaticities, and the results of this
paper are independent on any linking hypotheses be-
tween chromaticities and appearances. Where needed
for informal purposes, the link will rely on the general as-
sumptions that distinct chromaticities generally correlate
with distinct appearances and that the direction of the
difference in chromaticity space correlates with the per-
ceived difference in dominant hues. For example, it is
sufficient to assume that the different appearances of
trees in shade and sunlight [Fig. 1(a)] correspond to dif-
ferences in neural signals (chromaticities) and that com-
parisons between neural signals are potentially exploit-
able by object and illuminant identification algorithms.

4. RECOVERY OF OBJECT AND
ILLUMINANT INVARIANTS
Sensor responses from an object can vary in a complex
manner if the scene contains highlights, shadows, inter-
reflections, etc. Therefore for formal analysis the situa-
tion has generally been reduced to that of flat matte sur-
faces under a spatially uniform diffuse illuminant.

The problem of color constancy has been defined as the
recovery of invariant surface spectral reflectances u i(l)
from the sensor responses (Sia , Mia , Lia).28–35 This is
an underdetermined problem that can be solved only un-
der severely restrictive conditions and assumptions.
This paper takes the approach that it is ‘‘neither correct
nor helpful to see color constancy as a problem of measur-
ing surface reflectance.’’36 Instead the task is conceived
of as providing surface descriptors that are the same

Fig. 2. MacLeod–Boynton chromaticities of 170 natural and
manmade objects (Vrhel et al.26) in equal-energy light.
across illuminants36,37 and illuminant descriptors that
are independent of the surfaces illuminated.

Essential colors would suffice as invariant descriptors,
but it is clear from Eqs. (1)–(4) that recovering
(Si , Mi , Li) and (Sa , Ma , La) is not possible from just
the cone signals (Sia , Mia, Lia). When certain addi-
tional assumptions are satisfied, it becomes possible to
identify essential colors. However, in general, less com-
plete recovery procedures may suffice. For many visual
tasks the functions of color constancy can be accom-
plished by establishing correspondence among surfaces
seen under different lights across either space or time.
The observer can safely infer that corresponding surfaces
have similar essential colors (or reflectances). Similarly,
for illuminant identification purposes it is often sufficient
to recover the color of a light relative to the color of an-
other light, e.g., the identification of the yellower illumi-
nant as sunlight in Fig. 1(a).

So that the problem will be tractable, the first algo-
rithm presented in this paper will operate on the assump-
tion that the visual system has access to sets of chroma-
ticities from the same set of objects under two spectrally
different illuminants. A second algorithm will treat the
case in which one of the sets of objects is a subset of the
other. The algorithms will attempt to match the same
objects across illuminants, i.e., to show that particular
pairs of chromaticities in the two sets belong to the same
object. With the same operation, the algorithms will in-
fer the difference in chromaticities between the illumi-
nants, i.e., their relative colors. If one set of object chro-
maticities is essential, then the algorithms will derive the
essential color of the other illuminant.

5. OBJECT CHROMATICITIES AND AFFINE
TRANSFORMATIONS
The algorithms presented in this paper are essentially
heuristic-based template matchers,18,38,39 which start
with sets of chromaticities under two different illumi-
nants, calculated from the cone catches in Eq. (1). The
task is to transform the chromaticities under one illumi-
nant so as to align the two sets of chromaticities for the
same objects on top of each and to recover illuminant in-
formation from the alignment procedure. The heuristic
that simplifies this task is based on the systematic nature
of the chromaticity shifts that occur when there is a
change in the spectrum of the illumination.

In Fig. 3, in the left panel, each circle represents the
L /(L 1 M) chromaticity coordinate of one object under
equal-energy light (horizontal axis) versus the L/(L
1 M) chromaticity coordinate of the same object under
zenith skylight40 (vertical axis). The diagonal of unit
slope is shown as a solid line. The energy spectrum of
skylight is shown in the right panel. As Endler41 has
pointed out, light on an overcast day is close to an equal-
energy light. The chromaticities of the illuminants are
plotted at the center of the large dashed cross in the left
and middle panels. The change between the illuminants
leads to a highly correlated translation of object chroma-
ticities along the L /(L 1 M) axis. Note that the line of
shift in object chromaticities passes through the shift in
illuminant chromaticities. The middle panel plots
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S /(L 1 M) chromaticities of the same objects under the
same two illuminants as in the left panel. The shift in
object chromaticities is a correlated change of slope, i.e., a
multiplicative shift. Another example of similar corre-
lated chromaticity changes is shown in Fig. 4, which uses
the same objects and compares equal-energy light to di-
rect sunlight. Notice that under sunlight, object chroma-
ticities along the S /(L 1 M) axis are shifted toward yel-
low relative to equal-energy light, whereas under skylight
they are shifted toward the violet side. These shifts are
consistent with the perceptual experience of shifts in ob-
ject colors in natural scenes, for example in Fig. 1(a).

These correlated shifts in chromaticities are a conse-
quence of correlated changes in all three classes of cone
quantal absorptions42–44 and the extremely high correla-
tion between L- and M-cone quantum catches.23,24 Cor-
related shifts in cone quantum catches have been demon-
strated for a large variety of objects and illuminants42–44
and are a consequence of integration within fairly broad-
band cone spectra. In fact, for all pairs of changes be-
tween phases of natural daylight,40 simulations showed
that, to a good approximation, illuminant spectrum
changes lead to an additive change along the rg axis and
a multiplicative one along yv.

To exploit the invariants of affine transformations, we
can summarize these changes in the form

F rgia

yvia
G 5 F1 0

0 sab
G F rgib

yvib
G 1 Ftab

0 G , (5)

where i is the index for objects in the set, (rgia , yvia) and
(rgib , yvib)are the L /(L 1 M) and S /(L 1 M) chromatici-
ties of the objects under illuminants A and B, and
(tab , sab) describe the shift in the chromaticity of illumi-
nant A relative to the chromaticity of illuminant B.

It is obvious from Eq. (5) that the chromaticities of a
Fig. 3. Left, L/(L 1 M) chromaticities of 170 objects (Vrhel et al.26) in equal-energy light versus chromaticities of the same objects in
zenith skylight; center, S /(L 1 M)chromaticities of the same objects under the same illuminants; right, energy spectrum of zenith sky-
light.

Fig. 4. Left, L /(L 1 M) chromaticities of 170 objects (Vrhel et al.26) in equal-energy light versus chromaticities of the same objects in
direct sunlight; center, S /(L 1 M) chromaticities of the same objects under the same illuminants; right, energy spectrum of direct sun-
light.
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single identifiable object under two illuminants would be
sufficient to derive the shift in all object chromaticities
and the relation (t, s) between the chromaticities of the
two illuminants. This result will be exploited in the two
algorithms that follow.

6. IDENTIFICATION ALGORITHM FOR THE
SAME SET OF OBJECTS UNDER TWO
DIFFERENT ILLUMINANTS
In the case in which chromaticities from the same set of
objects are available under two illuminants, the algo-
rithm simply estimates tab , the illuminant chromaticity
shift along the rg axis, as the average difference between
rgia and rgib for all i in the set. Similarly, sab , the il-
luminant chromaticity scalar along the yv axis, is ob-
tained from the average ratio of yvia to yvib for all i.
These derivations are based on the property of affine
transformations that the transform of the chromaticity
that is at the center of gravity of the first set is always
equal to the center of gravity of the transformed set. Cal-
culation of the average rg difference is not a problem, so
the obvious question is how to pick corresponding chro-
maticities from the two sets to calculate the average
yv ratio. Excellent alignment between pairs of chroma-
ticities could be obtained by exploiting more involved
affine invariants as is done in computer object
recognition.18,38,39 However, a simpler strategy gives
satisfactory results in this case. As shown in Figs. 3 and
4, the rank order of object chromaticities is generally pre-
served along each axis. Therefore in practice it is suffi-
cient to rank order each set of chromaticities individually
and to compute differences and ratios between pairs of
the same rank order.

Figure 5 shows the result of applying the above algo-
rithm to random samples of 50 chromaticities (from
among the 170 objects) illuminated by equal-energy light
(diamond) and each of the illuminants, whose chromatici-
ties are shown as circles. These included five phases of
natural sunlight,40 a tungsten light, and a fluorescent
light. Since the comparison illuminant was equal en-
ergy, essential illuminant chromaticities can be recovered
by applying the shifts (taE , saE) to the chromaticity of
the equal-energy spectrum. The crosses represent the
chromaticities recovered by the algorithm for each of the
illuminants. The crosses for each illuminant are close to
the respective circles, indicating that despite the approxi-
mate heuristics used in the algorithm, illuminant shifts
for a variety of illuminants can be recovered reliably.
The algorithm works for any pair of illuminants, but in
the absence of knowing the essential chromaticities for ei-
ther illuminant, (tab , sab) will provide information only
about the hue shift between the essential colors of the il-
luminants.

If two scenes contain the same objects, even in different
spatial arrangements, through this algorithm the
illuminant-caused chromaticity shift can be derived sim-
ply. If need be, one can then apply the shift to the chro-
maticities of individual objects under one illuminant to
find objects with the same spectral reflectance functions
under the second illuminant.
7. IDENTIFICATION ALGORITHM FOR A
SUBSET OF OBJECTS TO BE ALIGNED
TO A SUPERSET
The case in which only a subset of the objects seen under
one illuminant is seen under the other seems not to have
been treated before. The first algorithm cannot be used
in this case because the corresponding pairs of chroma-
ticities are not known. Solving the correspondence prob-
lem is more difficult in this case, because we need to esti-
mate not only the shape change in the group of
chromaticities but also the best position for aligning the
smaller set on the bigger set.

A simple algorithm was written in MATLAB and used in
the simulations described below. The algorithm rank or-
ders the chromaticity pairs (rgia , yvia) for all i in the su-
perset and (rgjb , yvjb) for all j in the subset, by the rg
component. Then it picks (rgjb8 , yvjb8 ) the smallest rg
chromaticity from the subset, matches it to one chroma-
ticity in the superset (rgia8 , yvia8 ), and estimates the
shifts in illuminant chromaticities by

~tab , sab! 5 ~rgjb8 2 rgia8 , yvjb8 /yvia8 !. (6)

With Eq. (5), the pair (tab , sab) is then used to esti-
mate the transformed chromaticities for all j in the sub-
set. With squared distance along the two axes used as
the metric, each transformed subset chromaticity is as-
sumed to belong to the same object as the nearest super-
set chromaticity. The total squared error is then calcu-
lated between the transformed subset chromaticities and
the nearest chromaticities in the superset. The above
procedure is extremely fast, so the algorithm calculates
the squared error for aligning (rgjb8 , yvjb8 ) to each chro-
maticity in the superset. The alignment that minimizes
the squared error is chosen as the best fit, and final esti-
mates of tab and sab are calculated from the average dif-
ferences and ratios, respectively, of all those pairs of sub-
set and superset chromaticities that have been identified
as belonging to the same object.

Fig. 5. Recovery of illuminant chromaticities by the algorithm.
The diamond depicts equal-energy light, which was one of the il-
luminants on random samples of 50 objects. The circles repre-
sent the actual chromaticity of the other illuminant in each of the
simulation experiments. The crosses represent the chromatici-
ties recovered by the algorithm.
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Figure 6 shows some results of using this algorithm.
The crosses in the left panel represent the chromaticities
of six of the Vrhel et al.26 objects illuminated by equal-
energy light. The circles in the middle panel show the
chromaticities of a larger sample of 17 Vrhel objects, illu-
minated by zenith skylight. The objects in the left panel
are all included in the set in the middle panel. The task
of the algorithm is to find the best additive transform
along L /(L 1 M) and the best multiplicative transform
along S /(L 1 M) so that each cross can be matched to the
circle that belongs to the same object. The crosses in the
right panel are the result of applying the best transform
found by the algorithm to the crosses in the left panel.
For comparison, those circles from the center panel that
belong to the same objects as the crosses are replotted in
the right panel. The fit of the crosses to the circles is not
perfect, but it is impressive that such a close fit can be
achieved by an algorithm that can solve the correspon-
dence problem for randomly arranged sets of chromatici-
ties, uses only simple heuristics, and is extremely rapid in
its operation. Figure 7 shows the results of applying the
same algorithm to objects illuminated by direct sunlight
and equal-energy light. These objects were the same as
those represented in Fig. 6. The fit of crosses to circles in
the right panel is even better than in Fig. 6, probably be-
cause the required shift in chromaticities is smaller.
Fig. 6. Matching of objects by the algorithm despite illuminant-caused chromaticity shifts. Left, chromaticities of six objects from the
Vrhel et al.26 set lit by equal-energy light; center, chromaticities of 17 objects from the Vrhel set, lit by skylight. The six objects in the
left panel are included in the 17. Right, crosses represent the results of applying to the crosses in the left panel the best affine trans-
formation calculated by the algorithm. To show the accuracy of the matching procedure, circles for the same objects are replotted from
the center panel.

Fig. 7. Matching of objects by the algorithm despite illuminant-caused chromaticity shifts. Left, chromaticities of six objects from the
Vrhel set lit by equal-energy light; center, chromaticities of 17 objects from the Vrhel set, lit by sunlight (the six objects in the left panel
are included in the 17). Right, crosses represent the results of applying the best affine transformation calculated by the algorithm to the
crosses in the left panel. To show the accuracy of the matching procedure, circles for the same objects are replotted from the center
panel.
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Any heuristic-based strategy can be ‘‘fooled’’ by care-
fully selected inputs, and the present algorithm relies on
circumstances being close to satisfying affine transform
assumptions. The algorithm has proven to be robust in a
large number of simulations. For most subset–superset
combinations, the squared error varied by up to a factor of
30 in choosing among alignments. Objects with the same
spectral reflectance functions were almost always identi-
fied correctly across illuminants or identified with objects
whose chromaticities were close to the veridical match.
This robustness is due in part to the algorithm’s search
for matches between discrete object chromaticities. In
additional simulations, when the algorithm was tested on
small sets that did not share objects with the larger set,
on the average, the squared error of the best alignment
across illuminants was about five times larger than when
subset objects were chosen from within the superset.
The error was similarly large when the algorithm tried to
align a nonintersecting smaller set to a larger set lit by
the same illuminant.

The discussion above has glossed over some potential
problems. Chromaticity space is not a metric space, so
calculating distances between points (squared error) is
not a strictly legitimate operation. It would be prefer-
able to measure fits in a perceptual metric space in which
errors in different color directions can be compared in
terms of magnitude, but it would be a major task to find
the metric space that corresponds to the particular adap-
tation state of the observer. Existing uniform color
spaces are based on adaptation to spatially uniform fields,
and the state of the visual system when adapted to varie-
gated fields cannot be predicted from measurements
made on spatially uniform fields.45 It remains an empiri-
cal question whether the distortions introduced by using
a squared norm in chromaticity space are tolerable. The
stopping rule for the best fit is another issue that will be
resolved as empirical experience accumulates. So far
there has been no need to use more sophisticated proce-
dures.

8. LEARNING TO IDENTIFY OBJECTS AND
ILLUMINANTS
It would be extremely easy for a nervous system or a ma-
chine to learn to use these heuristic algorithms for match-
ing objects across scenes and extracting relative colors of
illuminants. All that is required is to learn from experi-
ence that illumination changes will shift object chroma-
ticities along rg as a translation and along yv as a mul-
tiplicative scaling. This is much simpler than learning
relative frequencies of occurrence of particular reflectance
and illuminant functions, which is required for extracting
object spectral reflectances by Bayesian estimation
procedures.34,35

There is a claim in the literature that after viewing the
same object under different illuminants, observers tend to
remember its ‘‘reflectance.’’46 Since the nervous system
does not have access to object reflectances, it is probably
more accurate to reword the above claim in terms of a
memory for essential colors. If this type of memory ex-
ists for everyday objects and lights, it can be used in con-
junction with the algorithms in this paper.
In the algorithms in this paper, if the correspondence of
even one object is known under two unknown illumi-
nants, the illuminant-caused shift (t, s) can be calculated
exactly and applied to solve for the correspondence of
other objects. A corollary of this property is that memo-
rizing the essential colors of a few objects can help to es-
timate the essential color of the illuminant of a scene that
contains even one of those objects. The estimated shift in
turn can be applied to the other object chromaticities to
estimate the essential colors of those objects. The same
procedure can be followed if the essential color of the illu-
minant on a scene is known.

9. CONCLUSIONS
This paper began with demonstrations showing that per-
ceived object colors change with illuminants and can thus
be used to extract information about illuminants. The
extent to which this is true about human observers needs
to be investigated more systematically in a variety of con-
trolled conditions. However, some published evidence
does show that when observers are made to pay attention
to the way things look, they perceive shifts in appearance
caused by the illuminant.47 In addition, observers are to
some extent capable of identifying the surface properties
of an object across two illuminants.48 For empirical in-
vestigations the considerations presented in this paper
imply that it is not profitable to measure the extent to
which traditional concepts of color constancy hold if the
purpose is to view any departure from perfect color con-
stancy as a limitation of the visual system. Rather, it
would be more profitable to examine the conditions under
which observers can identify objects of similar surface re-
flectances under different illuminants despite the
changes in appearance.

This paper presents two simple heuristic algorithms
that match objects across illuminants and derive illumi-
nant shifts purely from a pair of chromaticity sets. If
such algorithms are implemented by the visual system,
they can enable the observer to recognize when the same
objects are being viewed under different illuminants de-
spite there being a discernible shift in the colors of the ob-
jects. It remains to be investigated whether in the neu-
ral representation of color, affine invariants are preserved
across spectral changes in the illuminant, which would
enable the human visual system to use similar algo-
rithms. One explanation for some recent ‘‘approximate-
color-constancy’’ results49 is that the visual system as-
sumes that the center of gravity of chromaticity sets is
preserved after an illumination change. The center of
gravity is one of the invariants of affine transformations.
Therefore the perceptual assumption about the center of
gravity could be based on the stored heuristic that illumi-
nation changes on objects correspond to affine transfor-
mations on sets of chromaticities.

The most common models of color constancy in the lit-
erature invoke Von Kries–type receptor adaptation to
equate neural signals from the same object across
illuminants.1 However, Von Kries scaling has been
shown to be inadequate to describe the multistage nature
of retinal and cortical adaptation mechanisms that can
influence color appearance.44,45 In addition, the assump-
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tions that must be satisfied for successful automatic
implementation of Von Kries scaling are unlikely to be
true in most situations.44 In variegated scenes, adapta-
tion mechanisms do attenuate the differences between
neural signals across illuminants, but in general the re-
sidual differences are greater than the limen of chromatic
discrimination.44 The algorithms in this paper can oper-
ate on the residual differences and are conceptually dif-
ferent from adaptation-based models of color constancy.

The approach in this paper is closest to machine-vision
approaches based on canonical color gamuts, which also
seek to provide surface color descriptors that are unaf-
fected by changes in the illuminant.36,37 The canonical
color descriptor of an object is defined as the sensor re-
sponses to a patch under a fixed canonical illuminant.36

The recovery procedure consists of constructing a prior
canonical gamut for as many colors as possible under a
single light and forming the convex hull of the gamut.
For a set of surfaces under another illuminant, con-
straints on possible illuminants based on sensor re-
sponses are used to estimate a transform for the illumi-
nant, which is applied to object sensor responses to obtain
color descriptors, i.e., estimates of appearance under the
canonical light. The adaptation of this procedure to two-
dimensional chromaticity space has made it more robust
to intensity variations and more efficient than in its
three-dimensional form.37 The present approach shares
the advantages of operating in chromaticity space and
has two additional advantages. First, the affine heuris-
tic has been shown to be valid for a wide variety of illu-
minants and objects. Second, the template-matching na-
ture of the algorithm obviates the need to store a
canonical gamut and also does not require additional ad
hoc heuristics such as maximizing the volume of the
matched set of chromaticities. Note that Eqs. (2) and (3)
show that if the canonical illuminant is specified to have
an equal-energy spectrum, then the canonical color is an
object invariant and is termed the essential color of the
object.

Another mathematically sophisticated approach to
color constancy has attempted to develop algorithms for
estimating the spectra of reflectances and
illuminants.28–35 These algorithms are based on esti-
mating each type of spectrum as a linear combination of a
small number of fixed basis functions.50–52 To function
in general conditions, these algorithms require validated
sets of basis functions, multiple views of many surfaces
under different illuminants, and information about which
surfaces under one illuminant correspond to which sur-
faces under the other illuminants. This approach has
also been implemented in a Bayesian framework that in-
corporates prior marginal probability distributions of sur-
face and illumination spectra.34,35 The two algorithms
presented in this paper not only are appreciably simpler
and faster in their operation than the linear-basis algo-
rithms, but they employ heuristics that are simpler to
learn and validate, require only one pair of sets of chro-
maticities, and they solve the correspondence problem as
part of extracting the color shift.

In addition, the second algorithm solves the correspon-
dence problem and extracts illuminant shifts even when
only a subset of objects is available under one of the illu-
minants. This is a direct consequence of the algorithmic
search for discrete corresponding points that preserve af-
fine invariants. As a consequence, this algorithm will be
useful in many more situations than previous algorithms.
For example, in Fig. 1(a) the trees in the sun are physi-
cally distinct and spatially separated from the trees in the
shade. They have reflectances that are probably only a
subset of the reflectances of the trees in the larger shaded
regions, and corresponding reflectances are present in dif-
ferent spatial arrangements under the two illuminants.

It is possible that in visual processing, heuristics or pri-
ors that are based on correlations across relevant condi-
tions are inherently more powerful than marginal priors.
A similar conclusion can be drawn from the detection of
motion, where detecting the orientation of spatiotemporal
energy (i.e., correlations across time and space) is often
more efficient than tracking the locations of identified
features.53
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